Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Total Environ ; 890: 164289, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2326226

RESUMEN

Molecular methods have been used to detect human pathogens in wastewater with sampling typically performed at wastewater treatment plants (WWTP) and upstream locations within the sewer system. A wastewater-based surveillance (WBS) program was established at the University of Miami (UM) in 2020, which included measurements of SARS-CoV-2 levels in wastewater from its hospital and within the regional WWTP. In addition to the development of a SARS-CoV-2 quantitative PCR (qPCR) assay, qPCR assays to detect other human pathogens of interest were also developed at UM. Here we report on the use of a modified set of reagents published by the CDC to detect nucleic acids of Monkeypox virus (MPXV) which emerged during May of 2022 to become a concern worldwide. Samples collected from the University hospital and from the regional WWTP were processed through DNA and RNA workflows and analyzed by qPCR to detect a segment of the MPXV CrmB gene. Results show positive detections of MPXV nucleic acids in the hospital and wastewater treatment plant wastewater which coincided with clinical cases in the community and mirrored the overall trend of nationwide MPXV cases reported to the CDC. We recommend the expansion of current WBS programs' methods to detect a broader range of pathogens of concern in wastewater and present evidence that viral RNA in human cells infected by a DNA virus can be detected in wastewater.


Asunto(s)
COVID-19 , Mpox , Ácidos Nucleicos , Humanos , Monkeypox virus , Aguas Residuales , Flujo de Trabajo , SARS-CoV-2 , ADN , Hospitales Universitarios , ARN Viral
2.
Sci Total Environ ; 857(Pt 1): 159188, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2121792

RESUMEN

Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples, which can serve as a noninvasive method of infectious disease surveillance. The research evaluates the efficacy of environmental monitoring of SARS-CoV-2 RNA in air, surface swabs and wastewater to predict COVID-19 cases. Using a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory housing roughly 500 students from March to May 2021 at the University of Miami, Coral Gables, FL. Students were randomly screened for COVID-19 during the study period. SARS-CoV-2 concentration in environmental samples was quantified using Volcano 2nd Generation-qPCR. Descriptive analyses were conducted to examine the associations between time-lagged SARS-CoV-2 in environmental samples and COVID-19 cases. SARS-CoV-2 was detected in air, surface swab and wastewater samples on 52 (63.4 %), 40 (50.0 %) and 57 (68.6 %) days, respectively. On 19 (24 %) of 78 days SARS-CoV-2 was detected in all three sample types. COVID-19 cases were reported on 11 days during the study period and SARS-CoV-2 was also detected two days before the case diagnosis on all 11 (100 %), 9 (81.8 %) and 8 (72.7 %) days in air, surface swab and wastewater samples, respectively. SARS-CoV-2 detection in environmental samples was an indicator of the presence of local COVID-19 cases and a 3-day lead indicator for a potential outbreak at the dormitory building scale. Proactive environmental surveillance of SARS-CoV-2 or other pathogens in multiple environmental media has potential to guide targeted measures to contain and/or mitigate infectious disease outbreaks within communities.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Aguas Residuales/análisis , ARN Viral , Estudios Prospectivos
3.
The Science of the total environment ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2046777

RESUMEN

Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples, which can serve as a noninvasive method of infectious disease surveillance. The research evaluates the efficacy of environmental monitoring of SARS-CoV-2 RNA in air, surface swabs and wastewater to predict COVID-19 cases. Using a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory housing roughly 500 students from March to May 2021 at the University of Miami, Coral Gables, FL. Students were randomly screened for COVID-19 during the study period. SARS-CoV-2 concentration in environmental samples was quantified using Volcano 2nd Generation-qPCR. Descriptive analyses were conducted to examine the associations between time-lagged SARS-CoV-2 in environmental samples and COVID-19 cases. SARS-CoV-2 was detected in air, surface swab and wastewater samples on 52 (63.4 %), 40 (50.0 %) and 57 (68.6 %) days, respectively. On 19 (24 %) of 78 days SARS-CoV-2 was detected in all three sample types. COVID-19 cases were reported on 11 days during the study period and SARS-CoV-2 was also detected two days before the case diagnosis on all 11 (100 %), 9 (81.8 %) and 8 (72.7 %) days in air, surface swab and wastewater samples, respectively. SARS-CoV-2 detection in environmental samples was an indicator of the presence of local COVID-19 cases and a 3-day lead indicator for a potential outbreak at the dormitory building scale. Proactive environmental surveillance of SARS-CoV-2 or other pathogens in multiple environmental media has potential to guide targeted measures to contain and/or mitigate infectious disease outbreaks within communities. Graphical Unlabelled Image

4.
ACS ES T Water ; 2(11): 1992-2003, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1927044

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in wastewater has been used to track community infections of coronavirus disease-2019 (COVID-19), providing critical information for public health interventions. Since levels in wastewater are dependent upon human inputs, we hypothesize that tracking infections can be improved by normalizing wastewater concentrations against indicators of human waste [Pepper Mild Mottle Virus (PMMoV), ß-2 Microglobulin (B2M), and fecal coliform]. In this study, we analyzed SARS-CoV-2 and indicators of human waste in wastewater from two sewersheds of different scales: a University campus and a wastewater treatment plant. Wastewater data were combined with complementary COVID-19 case tracking to evaluate the efficiency of wastewater surveillance for forecasting new COVID-19 cases and, for the larger scale, hospitalizations. Results show that the normalization of SARS-CoV-2 levels by PMMoV and B2M resulted in improved correlations with COVID-19 cases for campus data using volcano second generation (V2G)-qPCR chemistry (r s = 0.69 without normalization, r s = 0.73 with normalization). Mixed results were obtained for normalization by PMMoV for samples collected at the community scale. Overall benefits from normalizing with measures of human waste depend upon qPCR chemistry and improves with smaller sewershed scale. We recommend further studies that evaluate the efficacy of additional normalization targets.

5.
Emerg Infect Dis ; 27(10): 2588-2594, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1486733

RESUMEN

Hospital-acquired infections are emerging major concurrent conditions during the coronavirus disease (COVID-19) pandemic. We conducted a retrospective review of hospitalizations during March‒October 2020 of adults tested by reverse transcription PCR for severe acute respiratory syndrome coronavirus 2. We evaluated associations of COVID-19 diagnosis with risk for laboratory-confirmed bloodstream infections (LCBIs, primary outcome), time to LCBI, and risk for death by using logistic and competing risks regression with adjustment for relevant covariates. A total of 10,848 patients were included in the analysis: 918 (8.5%) were given a diagnosis of COVID-19, and 232 (2.1%) had LCBIs during their hospitalization. Of these patients, 58 (25%) were classified as having central line‒associated bloodstream infections. After adjusting for covariates, COVID-19‒positive status was associated with higher risk for LCBI and death. Reinforcement of infection control practices should be implemented in COVID-19 wards, and review of superiority and inferiority ranking methods by National Healthcare Safety Network criteria might be needed.


Asunto(s)
COVID-19 , Sepsis , Adulto , Prueba de COVID-19 , Humanos , Incidencia , Pandemias , Estudios Retrospectivos , SARS-CoV-2
6.
Antimicrob Agents Chemother ; 65(10): e0114621, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1416579

RESUMEN

Clinical cases of C. auris noted during a COVID-19 surge led to an epidemiological, clinical, and genomic investigation. Evaluation identified a close genetic relationship but inconclusive epidemiologic link between all cases. Prolonged hospitalization due to critical illness from COVID-19 and use of antimicrobials may have contributed to clinical infections.


Asunto(s)
COVID-19 , Candidiasis Invasiva , Antifúngicos/uso terapéutico , Candida/genética , Candidiasis Invasiva/tratamiento farmacológico , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA